
Multi-task Cox Proportional Hazard Model for 

Predicting Risk of Unplanned Hospital Readmission 
 

Megan Grzyb, Amber Zhang, Cristina Good, Khaled Khalil, Bochen Guo, 
Lu Tian, Jose Valdez, and Quanquan Gu 

University of Virginia, mng5hg, yz2fh, cmg2hk, kmk3dc, bg9vn, lt2eu, jav4d, qg5w@virginia.edu 
 

 

Abstract - Unplanned hospital readmissions are a 

tremendous challenge faced by medical providers in the 

United States: In 2015, 17.8% of Medicare and Medicaid 

patients returned to the hospital within 30 days of 

discharge. An unplanned readmission marks a setback in 

a patient’s recovery and burdens hospitals financially--the 

estimated national cost of caring for readmitted patients 

is $15 billion annually. Financial penalties from the 

Center for Medicare & Medicaid Services intensify these 

costs, penalizing hospitals with high rates relative to the 

national average. At the University of Virginia Medical 

Center, the Medicare & Medicaid risk-adjusted 

readmission rate of 16.8%  is higher than the national 

average of 15.2%. This higher than average rate leads to 

penalties, which are estimated at $764,000 for the 2017 

fiscal year. The UVA Medical Center prioritizes reducing 

their readmission rate and has invested time and 

resources towards modeling readmission risks for their 

patients. Our research aims to improve the accuracy of 

risk projections at the Medical Center by exploring 

alternatives to current models. We developed a Cox 

proportional hazard model that takes in a set of covariates 

as input and predicts a patient’s risk of readmission. The 

model had a concordance index of 0.70 resulting from 10-

fold cross validation after applying the model to a test set. 

The Cox proportional hazard model was expanded using 

multi-task learning, a novel approach for survival analysis 

that is commonly used in classification. The new multi-

task Cox proportional hazard model resulted in a 

concordance index of 0.52. Accurately predicting a 

patient’s readmission risk will assist the UVA Medical 

Center in targeting high-risk patients during outpatient 

and follow-up care. Medical providers will be able to 

utilize the modeling output to better understand factors 

that influence the risk of readmission. 
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INTRODUCTION AND MOTIVATION 

A medical readmission is defined as an urgent medical 

situation requiring hospitalization within 30 days of discharge 

from a previous admission. While a number of reasons can 

lead a patient to an unplanned readmission, all readmissions 

tend to negatively affect patients and their recovery processes. 

Overall, a patient’s health in the 30-day window reflects the 

quality of care administered by the hospital, as well as the 

hospital’s ability to transition the patient to a follow-up care 

setting.  
Patients and health insurance companies carry the 

financial burden of readmissions, paying an estimated $15 

billion annually to hospitals to cover treatments during 

readmissions [1]. Government-funded insurance programs 

Medicare and Medicaid have the least ability to cover the 

costs of extraneous care, yet the nearly 18% of their patients 

facing a readmission in 2015 was highest among insurance 

providers [2]. As a result, in line with its efforts to improve 

the quality of care and curb hospitals’ readmission rates, the 

Center for Medicare and Medicaid Services (CMS) began to 

enforce financial penalties on hospitals with high readmission 

rates, beginning in October 2012 [3].  
CMS readmission penalties thus encourage hospitals to 

provide higher quality care and to continue interacting with 

patients throughout the 30 days following a hospitalization, to 

reduce the likelihood of readmissions. CMS penalties apply 

to readmissions for six specific conditions--acute myocardial 

infarction (heart attack), heart failure, chronic obstructive 

pulmonary disease (lung disease), hip and knee replacements, 

pneumonia, and stroke--with each condition having a unique 

penalty amount associated with it. CMS calculates a 

readmission payment adjustment for each hospital to measure 

their performance against the national average and penalizes 
hospitals as necessary [3].  

The University of Virginia Medical Center’s (UVAMC) 

current annual readmission rate is greater than the national 

average, at a 16.8% risk-adjusted rate compared to the 

national average of 15.2%, for data collected between July 

2013 and June 2014 [4]. This rate covers only CMS patients-

-around 18,300 per year--accounting for 63.1% of UVAMC’s 

total patient population [5]. While reducing their 

readmissions lowers CMS penalties, which is estimated at 

$764,000 for 2017, the real motivation lies in the desire to 

keep all patients healthy and out of the hospital [6].  
The UVAMC's efforts through Locus Health, a local 

transitional care facility, prevented approximately 131 all-

cause readmissions over an 11-month period in 2016 [5]. 

Locus Health determines their care intervention based off a 

Random Survival Forest (RSF) predictive model, developed 

by Dr. Robert Yerex of the UVAMC data analytics 

department. The RSF model creates an ordered list of 

Medicare and Medicaid patients within the 30-day discharge 



window, in order of their likelihood of readmittance on a 

given day. Patients are ranked relative to one another to show 

who has the highest risk [7].  
As CMS continues to amend and add more diseases to 

their penalty program, the importance of accurately predicting 

when a patient may be readmitted becomes heightened. A 
more accurate model allows sharper predictions, but critical 

limitations exist in the current model used by the UVAMC. 

The current RSF model provides a list of patients ranked by 

their risk of readmission, but the differences in adjacent 

rankings are not equal and vary throughout the 30-day 

projected period. Thus, valuable information is lost through 

the ranking system.  
These limitations guided our development of two new 

models to predict readmissions: the Cox proportional hazard 

model and the multi-task Cox proportional hazard model. The 

motivation for using these approaches stem from their lack of 

assumptions about the underlying hazard function, primarily 
focusing on how the predictors affect the hazard function. The 

multi-task Cox proportional hazard model works similarly 

Cox proportional hazard model, but it differs by training tasks 

simultaneously using a shared representation [8]. Our goal is 

to apply multi-task learning to the proportional hazard model 

to increase accuracy and predictive power of readmission 

projections. 

BACKGROUND AND LITERATURE REVIEW 

I. Hospital Readmissions 

Research has been done to evaluate the existing CMS risk 

adjustment model used to calculate the financial penalties that 

hospitals receive. The existing model includes patients’ age, 

sex, discharge diagnosis, and recent diagnoses as factors. 

These characteristics could potentially result in unfair 

penalizations since these factors are not distributed evenly 

across hospitals. A study published in the Journal of the 

American Medical Association assessed 29 patient 

characteristics as potential predictors of 30-day readmission 

when added to standard CMS risk adjustments of hospital 
readmission rates. Of the additional 29 patient characteristics 

assessed, 22 significantly predicted readmission beyond 

standard adjustments. Accounting for a comprehensive array 

of clinical and social characteristics substantially decreased 

the difference in patients’ probability of readmission between 

hospitals with higher versus lower readmission rates. This 

finding suggests that CMS is penalizing hospitals to a large 

extent based on the population of patients they serve, not the 

quality of service provided by the hospital [9]. 
Efforts have also been put into directly developing 

models that predict 30-day hospital readmissions. A study 
published in Journal of Hospital Medicine proposed a risk 

prediction model incorporating Electronic Health Record 

(EHR) data from the “full” hospital stay. The study compared 

“full-stay” model performance to other risk prediction models 

such as a “first-day” model, which used a separately derived 

model using EHR data from the first day of hospitalization. 

Other models compared include two widely accepted and 

utilized models that rely on claims data-- the LACE model 

and the HOSPITAL model. Although the “full-stay” model 

had statistically better discrimination than other models, the 

improvement was modest. The “full-stay” model was able to 

predict a broader range of probabilities for readmission risk, 

but it was only slightly better in identifying the highest risk 

quintile compared to other models [10]. 
Numerous other studies have been conducted to develop 

predictive models that identify discharged patients at high risk 

of readmission. However, Kansagara et al. concluded that 

most readmission risk prediction models are limited in their 

ability to account for a holistic range of patient characteristics 

and to generalize to a broader and mixed population [11]. 

II. Survival Analysis in UVAMC Readmission Model 

Survival analysis is based on relating time before a “failure” 

event occurs to one or more covariates that may be associated 

with the length of that time. A survival model is based on a 

hazard function, which relates the risk of failure over time at 

baseline covariates to the parameters showing the effect of 
how the hazard function varies with changes to the covariates 

[12]. 
Dr. Robert Yerex, a senior data scientist at the University 

of Virginia Medical Center, developed a Random Survival 

Forest (RSF) model aimed at identifying patients at high risk 

of readmission. According to Dr. Yerex, the “predictors [are] 

identified primarily from CMS claims as found in the Claim 

and Claim Line Feed (CCLF) files provided by the CMS, in 

combination with location-based socioeconomic predictors to 

identify which patients are at high risk of 30-day readmission” 

[7]. In his model, the RSF technique produces predictions and 
highlights the most critical variables contributing to 

readmissions. Dr. Yerex also employs feature engineering, a 

process in which a large number of base dimensions are 

combined to create smaller features sets. By combining ICD-

9 codes, the multi-digit International Classification of 

Diseases codes designating 14,000 specific conditions, he 

created new features within a patient’s claim.  
The RSF model utilizes a collection of decision trees, 

known as a random forest, during learning to derive a 

prediction for survival time given a particular set of 

covariates. The decision trees are built to classify an instance 

based on the values of its attributes. With readmissions, the 
splitting criterion used in growing a tree centers on survival 

time and censoring, with a censored observation meaning an 

instance which has incomplete information about a patient’s 

outcome. These techniques of RSF are implemented in the 

randomForestSRC package in R, which Dr. Yerex used to 

model UVAMC 30-day readmission prediction.  
Features in the final RSF model are of two forms; simple 

and engineered. Simple features are directly related to 

attributes in the dataset, such as age, gender, and race. Derived 

features are generated through complex combinations and 

transformations of attributes in the dataset. For example, a 
patient with the codes “572.3” and “249.10” would be 

combined into an engineered feature of “572.3:249.10” to 

show the progression of diagnoses. Our Cox and multi-task 

proportional hazard models utilize similar data 



transformations to group successive diagnoses of patients. 

Combining the simple and engineered features in his Random 

Survival Forests model, Dr. Robert Yerex’s final model 

exhibited an average concordance index (CI) of 0.72 [7]. 

III. Cox Proportional Model 

A different survival analysis that is widely used is the Cox 
proportional hazard model. The Cox proportional hazard 

model is a semi-parametric model that is learned by 

optimizing a partial likelihood function. It assumes that the 

hazard function for different learning tasks are proportional 

over time; for example, that the hazard ratio between two 

patients is constant over the 30-day readmission window. 

The Cox model makes no assumptions about the underlying 

distribution of failure times, which would be the time a 

patient experiences a readmission. The log partial likelihood 

function of the Cox proportional model is shown in (1) 

 
 𝑙(𝐵) =  ∑ 𝐵𝑇𝑠𝑖 − 𝑑𝑖𝑙𝑜𝑔[∑ exp (𝐵𝑇𝑧𝑗)]𝑗∈𝑅𝑖

𝐷
𝑖=1   (1) 

 
where D is the set of patients; BT is the transposed 

coefficient matrix; si is the sum vectors zi over all individuals 

who “die” at time ti; di is the number of events at ti and zj is 

the covariate vector [13]. 

IV. Multi-Task Learning 

This research aims to combine the Cox proportional hazard 

modeling technique with multi-task learning. A widely cited 

definition of multi-task learning describes it as “an approach 

to inductive transfer that improves generalization by using the 

domain information contained in the training signals of 

related tasks as an inductive bias. It does this by learning tasks 
in parallel while using a shared representation; what is learned 

for each task can help other tasks be learned better” [14]. In 

general, multi-task learning learns from a shared 

representation across related tasks and ideally, this leads to a 

decrease in prediction error.  
A 2016 paper titled “A Multi-Task Learning Formulation 

for Survival Analysis” describes a methodology where the 

survival time prediction problem is formulated into a multi-

task learning problem, which then addresses the regression 

component as a binary classification problem. The model 

classifies whether an instance’s failure has occurred by time 
Ti or not. The researchers assert that through this shared 

representation across related tasks, “the dependency between 

the outcomes at various timepoints” is captured [8].  

The objective function for the multi-task model utilizes 

an l2,1-norm penalty in order to learn a shared representation 

across related tasks while emphasizing only important 

features and alleviating overfitting. The algorithm described 

is compared to other standard time-dependent prediction 

methods using the concordance index and the weighted 

average of area under the curve (AUC) and shown to 

outperform them [8]. While the paper discussed aims to 

extend the functionality of multi-task learning to survival 
analysis by formulating the problem as a binary classification 

problem, our team sought to incorporate the benefits of multi-

task learning within the standard Cox proportional model 

formulation. 

METHODOLOGY 

I. Data Source 

The data used for this analysis was obtained from Electronic 

Medical Records (EMRs) for CMS patients at the University 

of Virginia Medical Center. The data covers an 11-month 

span, with the earliest data point occurring on December 16, 

2015 and the latest on November 14, 2016. Among the 1617 

individual patients in the dataset, 2373 instances of 

admissions occurred, 13.4% of which were unplanned 

readmissions. Patients with multiple admissions were fully 

used in the analysis as each admission counted as a separate 

data instance. To narrow down the thousands of diagnosis 
possibilities, individual ICD-9 codes were converted to 

diagnoses categories provided by a hash table. The hashing is 

based on certain qualitative characteristics of each code 

relating to its main significance. For example, the 426 codes 

describing various tuberculosis diagnoses are hashed to a 

single code representing all tuberculosis diagnoses. Thus, the 

14,000 possible diagnoses are summarized to 42, which 

improves modeling by adding more instances to each task 

group [15]. 

The EMR dataset has 18 predictors, which spans medical 

and demographic characteristics. Some of the most significant 
predictors, with p-value less than 0.05 during tests of variable 

significance, are included in Table 1 to demonstrate the types 

of attributes used in modeling. 

 

TABLE I 
KEY PREDICTORS IN EMR DATA 

Attribute Description 

Median income 

 

Education 

 

Days since last 

discharge 

Readmission count 

Number of procedures 

Age 

Discharge code 

Admissions type 

Admission source 

Smoking behaviors 

 

Admission diagnosis 

 

Principal diagnosis 

 

Median income of patients within a given 

census block 

Percentage of population in the patient’s census 

block that completed high school 

Number of previous admissions prior to current 

Number of previous admissions prior to current 

Number of procedures performed 

Age of the patient  

Discharge code with 42 different categories 

Types of admission: emergency, urgent, or 

routine  

Sources of admission: 8 different categories 

Text field of smoking behavior in one of 5 

different categories 

Condition identified by the physical at the time 

of the patient’s admission, requiring 

hospitalization 

Condition which occasioned the admission to 

the hospital, after study 

 

Steps were taken to normalize data in order to ensure the 

algorithms for the Cox proportional and multi-task model 

converge. All numeric data was normalized into the range of 

0 to 1.  
To aid model analysis, two new attributes were computed 

and incorporated: admission count, the number of previous 

admissions prior to current, and readmission day, the number 

of days since patient’s last discharge. 



II. Cox Proportional Hazard Model 

Using the preprocessed data as described above, the Cox 

proportional hazard model was fit using the coxph function in 

the survival R package as described in Fox and Weisberg’s 

research on the survival analysis [16]. To condense the model, 

attributes were selected based on the significant p-value of the 
full model. The Cox model was then run on this smaller 

dataset which was made up of seven attributes: the patient’s 

smoking status, sex, age, admissions source, admission 

category, days since first readmission, and number of times a 

patient had been admitted prior to admission. Test and 

training sets were generated and a ten-fold cross validation 

was used to evaluate the Cox proportional hazard model. 
 

III. Multi-task Cox Proportional Hazard Model 

While the Cox proportional hazard model is a fundamental 
technique in survival analysis, it still has its drawbacks. For 

example, the assumption of proportional hazards suggests that 

the survival curves of all tasks have a similar shape, which is 

not always a realistic assumption. Additionally, in order to 

estimate survival time, the Cox model first needs to estimate 

a baseline hazard function and use that alongside the 

estimated hazard ratios to make predictions about survival 

times. This potentially increases the likelihood of error in the 

predictions made by the model [8]. Such drawbacks of the 

Cox model suggest there could be modifications implemented 

to improve the accuracy of its results. The modification 
explored by the team is to integrate the concepts of multi-task 

learning into the Cox model with the aim of producing more 

accurate predictions of patients’ readmission times.  
The primary motivation for applying multi-task 

learning is its ability to learn a shared representation across 

related tasks and reduce the prediction error of each task. A 

Ph.D. student in the Systems and Information Engineering 

department at UVA, Lu Tian, developed the multi-task Cox 

proportional hazard model R package used for this component 

of the analysis. The algorithm generates a synthetic dataset 

that uses the exponential distribution as the baseline hazard 

function. An estimated coefficient matrix, B, is then 
generated which can be compared to the underlying real 

coefficient matrix, B, by calculating the difference or drawing 

the heat maps [17]. 
In this formulation, a “task” refers to an engineered 

feature which is derived from a patient’s diagnosis and 

discharge codes. The diagnosis and discharge codes are 

mapped into a smaller subset of codes in order to reduce the 

sparsity of that feature matrix. That mapping is accomplished 

using the hash table referenced in the Data Sources section 

above. Below in (2) is the model’s log partial likelihood 

formulation which is solved in the R package using proximal 
gradient descent. 

  
 𝑙(𝐵) =  ∑ ∑ 𝐵𝑘

𝑇𝐷
𝑖=1 𝑠𝑖,𝑘 − 𝑑𝑖,𝑘𝑙𝑜𝑔[∑ exp (𝐵𝑘

𝑇𝑧𝑗)] +𝑗∈𝑅𝑖,𝑘

𝐾
𝑘=1

𝜆||𝐵||2,1            (2) 

 

where K is the set of tasks, D is the set of patients, BT
k is the 

transposed coefficient vector for a specific task k; si,k is the 

sum of vectors zi over all individuals who are readmitted at 

time ti for a specific task k; di,k is the number of events at ti for 

a specific task k, and zj is the covariate vector [13]. 

The multi-task model was trained on a training set 75% 
the size of the EMR data set for hospital readmissions. The 

coefficients in the resulting coefficient matrix, B, were 

applied to the patients in the remaining 25% testing dataset 

depending on which task K a given patient belongs to. This 

produces predictions for patients’ survival time which are 

used to evaluate the predictive capability of the model. 

RESULTS 

After running the ten-fold cross validation for the Cox 
proportional hazard model, the model resulted in a 

concordance index of 0.70 with a standard deviation of 0.02. 

All patients in the same pool have the same 

estimated  baseline function, but with different covariates 

affecting the predictions. The cumulative hazard rate for the 

model can be seen below in Figure 1. 

 
 

FIGURE I 
CUMULATIVE HAZARD RATE FOR THE COX PROPORTIONAL HAZARD MODEL 

 

The multi-task Cox proportional model has different 

baseline hazard functions for patients in different task groups. 

After running cross validation, the model exhibited a 

concordance index of 0.52. 

 

DISCUSSION 

The concordance index of both the Cox proportional hazard 

model and the multi-task Cox proportional hazard model, 

0.70 and 0.52, respectively, fall below the 0.72 concordance 

index of the Random Survival Forest. The concordance index 

(CI) measures overall predictability for survival models by 

calculating the proportion of pairs within the data where the 

instance with a longer survival time is matched with a higher 

predicted probability of survival [18]. When applied to two 



patients facing readmission, the CI calculates if the patient 

who the model predicted to stay out of the hospital longer 

actually had a longer period of time until a readmission. Thus, 

the higher CI for the RSF model indicates it provides stronger 

predictors than both the Cox and multi-task models. 
While the RSF model performed slightly better than the 

standard Cox model, both models performed significantly 

better than the multi-task Cox model. There are a number of 

possible explanations that could provide insight into why that 

is. First, the tasks by which patients were grouped in the 

multi-task model were the patients’ diagnoses codes. A 

number of the diagnosis codes were only found once or twice 

in the training dataset which means that the B coefficient 

vector for that task was based on just a few observations. This 

could pose problems with regards to how applicable or 

representative that coefficient vector is for its respective task. 

Second, the dataset as a whole was relatively small and it is 

conceivable that the multi-task formulation is better suited for 
a bigger dataset when compared with the RSF model or the 

standard Cox model. Third, it is possible that our choice of 

tasks by which the patients are grouped is not best suited for 

the readmissions problem. There could be other factors that 

would provide better predictive power of readmissions time 

when grouped together into a shared representation within the 

multi-task model.  
Overall, the results appear similar to other readmission 

prediction studies. Padhukasahasram et al.’s 2015 study of 

clinical variables impact on readmission following a heart 

failure featured similar differences between Cox proportional 
hazard and RSF models: Their Cox model had a 0.61 CI and 

their RSF model a 0.67 CI [19]. This increase in the RSF 

model’s predictability parallels findings from our research 

and could point to RSF being better suited towards survival 

analysis, especially when applied to the readmissions 

problem. 

CONCLUSION 

Significant benefits exist in predicting readmission risk for 
the 30 day period following discharge, as it strengthens 

medical providers’ abilities to determine the most appropriate 

follow-up care. Locus Health, the outpatient care center 

partnering with UVAMC, may particularly benefit from the 

model when choosing which follow-up care procedures best 

fit a certain patient’s recovery timeline. With approximately 

131 projected readmissions prevented over an 11-month 

period, additional predictive models may help to grow this 

statistic even more rapidly going forward. Other healthcare 

professional could benefit too--a primary care physician could 

evaluate risk projections to determine the point in time when 
s/he should check-in on a discharged patient’s recovery, and 

medical social workers could be more encouraged to 

understand a patient’s circumstances after seeing their 

readmission risk projections. These actions could lead to 

long-term gains for a patient’s overall wellness. 
Despite the potential benefits of using predictive models 

for readmissions, limitations exist with their implementation. 

A variety of health care professionals interacting with the 

model means each would need training on how to apply its 

output to patients. It will take time to train these professionals, 

and in turn, it will take time for them to learn how to fully 

utilize the model within their field. Some professionals may 

question the utility of using the model’s output because they 

do not understand the theoretical backbone of the model or its 
output. Some may also place greater trust in their own 

judgment and experience than the output of a model they 

cannot understand. Additionally, there is the bigger problem 

of generalizability, where a lot of the models can be found to 

perform well on certain datasets, but that performance does 

not carry over to other populations of patients for a multitude 

of reasons. Such reasons can include differences 

demographic, social, or geographic factors, nature of the 

patient populations and medical practices.  These are all 

legitimate obstacles to successfully implementing predictive 

models, and appropriate steps should be taken to ensure all 

issues are addressed. 
Predictive models will continue to become more useful 

in reducing readmission rates nationwide. As other hospitals 

simultaneously advance in assessing readmissions, the 

national average may fall to the same degree as the UVAMC’s 

rate falls. Thus, UVA’s comparison to the national average 

may remain relatively constant. Though UVA’s Medicare and 

Medicaid financial penalties may stay around the same level, 

nationwide reduction in readmissions should be seen as an 

overall success for the healthcare realm. Fewer readmissions 

means less federal money passed between hospitals and CMS, 

allowing those funds to be better allocated for other public 
purposes.  

FUTURE WORK 

While the multi-task model had a lower performance measure 

compared to the standard Cox proportional hazard model, it 

is possible that testing the algorithm on a larger or more 

specific dataset may result in a higher concordance index. It 

is also possible that choosing other attributes as tasks by 

which the patients are grouped could lead to better results 
from the multi-task formulation. Additionally, testing this 

implementation of the multi-task Cox on larger datasets can 

help fine-tune the algorithm and improve it for the purpose of 

providing more accurate predictions. Due to the limited 

amount of time and familiarity with the multi-task package, 

we were not able to implement these suggestions, but we are 

hopeful it will result in more accurate predictions going 

forward. 
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